11111

COURSE INTRODUCTION AND APPLICATION INFORMATION


ce.cs.ieu.edu.tr

Course Name
Code
Semester
Theory
(hour/week)
Application/Lab
(hour/week)
Local Credits
ECTS
Fall/Spring
Prerequisites
None
Course Language
Course Type
Elective
Course Level
-
Mode of Delivery -
Teaching Methods and Techniques of the Course Discussion
Group Work
Problem Solving
Q&A
Critique
Application: Experiment / Laboratory / Workshop
Course Coordinator -
Course Lecturer(s) -
Assistant(s) -
Course Objectives
Learning Outcomes The students who succeeded in this course;
  • Students will be able to know the principles of abstraction in program design.
  • Students will be able to know the concepts of object oriented process
  • Students will be able to know the object oriented design principles using classes, constructors and other tools.
  • Students will be able to know the concepts of inheritance
  • Students will be able to know the concepts of interfaces
  • Students will be able to know the concepts of polymorphism and abstract classes
Course Description

 



Course Category

Core Courses
Major Area Courses
X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

 

WEEKLY SUBJECTS AND RELATED PREPARATION STUDIES

Week Subjects Required Materials
1 Introduction to object oriented concepts Weisfeld Ch. 1
2 How to think in terms of objects Weisfeld Ch. 2
3 Advanced object oriented concepts Weisfeld Ch. 3
4 The anatomy of a class Weisfeld Ch. 4
5 Class design guidelines Weisfeld Ch. 5
6 Designing with objects Weisfeld Ch. 6
7 Midterm exam
8 Mastering inheritence and composition Weisfeld Ch. 7
9 Frameworks and reuse: designing with interfaces and abstract classes Weisfeld Ch. 8
10 Building objects Weisfeld Ch. 9
11 Building objects Weisfeld Ch. 9
12 Creating object models with UML Weisfeld Ch. 10
13 Creating object models with UML Weisfeld Ch. 10
14 Project presentations
15 Project presentations
16 Review of the Semester  
Course Notes/Textbooks Weisfeld, M., The ObjectOriented Thought, 3rd ed., AddisonWesley, 2009.
Suggested Readings/Materials The Java Tutorials, http://docs.oracle.com/javase/tutorial/index.html.

 

EVALUATION SYSTEM

Semester Activities Number Weigthing
Participation
1
5
Laboratory / Application
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
Project
1
20
Seminar / Workshop
Oral Exam
Midterm
1
25
Final Exam
1
50
Total

Weighting of Semester Activities on the Final Grade
50
Weighting of End-of-Semester Activities on the Final Grade
50
Total

ECTS / WORKLOAD TABLE

Semester Activities Number Duration (Hours) Workload
Course Hours
(Including exam week: 16 x total hours)
16
2
32
Laboratory / Application Hours
(Including exam week: 16 x total hours)
16
2
Study Hours Out of Class
15
3
Field Work
Quizzes / Studio Critiques
Portfolio
Homework / Assignments
Presentation / Jury
Project
1
9
Seminar / Workshop
Oral Exam
Midterms
1
10
Final Exams
1
10
    Total
138

 

COURSE LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP

#
Program Competencies/Outcomes
* Contribution Level
1
2
3
4
5
1

Adequate knowledge in Mathematics, Science and Computer Engineering; ability to use theoretical and applied information in these areas to model and solve Computer Engineering problems

X
2

Ability to identify, define, formulate, and solve complex Computer Engineering problems; ability to select and apply proper analysis and modeling methods for this purpose

X
3

Ability to design a complex computer based system, process, device or product under realistic constraints and conditions, in such a way as to meet the desired result; ability to apply modern design methods for this purpose

X
4

Ability to devise, select, and use modern techniques and tools needed for Computer Engineering practice

X
5

Ability to design and conduct experiments, gather data, analyze and interpret results for investigating Computer Engineering problems

6

Ability to work efficiently in Computer Engineering disciplinary and multi-disciplinary teams; ability to work individually

7

Ability to communicate effectively in Turkish, both orally and in writing; knowledge of a minimum of two foreign languages

8

Recognition of the need for lifelong learning; ability to access information, to follow developments in science and technology, and to continue to educate him/herself

9

Awareness of professional and ethical responsibility

10

Information about business life practices such as project management, risk management, and change management; awareness of entrepreneurship, innovation, and sustainable development

11

Knowledge about contemporary issues and the global and societal effects of engineering practices on health, environment, and safety; awareness of the legal consequences of Computer Engineering solutions

*1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

 

İzmir Ekonomi Üniversitesi | Sakarya Caddesi No:156, 35330 Balçova - İZMİR Tel: +90 232 279 25 25 | webmaster@ieu.edu.tr | YBS 2010